De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Evenwichtswaarde bij logistische groei

Gegeven is de volgende som:
Logistische groei kan met verschillende formules beschreven worden. De formule u(t+1)=u(t)+g·u(t)·((V-u(t))/V) heeft het voordeel dat groeivoet en verzadigingsniveau direct zijn af te lezen. Gegeven is de recursievergelijking u(t+1)=0.009(300-u(t))·u(t). De bedoeling is dat ik hierbij de evenwichtswaarde uitreken. Volgens de antwoorden moet hier 188,9 uitkomen, maar ik begrijp niet hoe ze hieraan komen.

S
Leerling bovenbouw havo-vwo - woensdag 6 november 2002

Antwoord

Hoi,

Je kan ook eens zien bij Groeifactor/verzadigingsniveau. Bij die vraag mag trouwens een link naar deze, omdat hier een definitie van de 'groeivoet' gegeven is (die consistent is met mijn veronderstelling toen).

De 'definiërende formule' is te herwerken tot u(t+1)=(1+g).u(t)-(g/V).u2(t)

Je concrete formule is 0.009x300.u(t)-0.009.u2(t)

Omdat de twee formules dezelfde waarden voor u(t+1) moeten geven voor alle t, moeten de coëfficiënten van u(t) en u2(t) gelijk zijn. Gelijkstellen geeft je:

1+g=0.009x300=2.7
g/V=0.009 of V=g/0.009

dus: g=1.7 en V=1.7/0.009=188.9

De bedoeling is dus van je concrete formule inderdaad in de vorm van de 'definiërende formule' te schrijven. Dan pas kan je (vergelijkingen voor) de parameters g en V identificeren. Zoals je ziet is dit niet noodzakelijk een omvorming die je op zicht kan...

Groetjes,
Johan

andros
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 6 november 2002



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3