De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Drie opeenvolgende termen van een rekenkundige rij

Hallo ik heb een vraagje.

Gegeven: x,y en z zijn drie opeenvolgende termen van een rekenkundige rij.

Gevraagd: Bewijs dat (x2+xy+y2), (x2+xz+z2) en (y2+yz+z2) ook drie opeenvolgende termen van een rekenkundige rij zijn.

Kevin
2de graad ASO - vrijdag 16 maart 2007

Antwoord

We hoeven alleen maar na te gaan dat
(x2+xz+z2)-(x2+xy+y2) en (y2+yz+z2)-(x2+xz+z2) aan elkaar gelijk zijn als x,y en z drie openvolgende termen van een rekenkundige rij zijn.

(x2+xz+z2)-(x2+xy+y2)=xz-xy+z2-y2=x(z-y)+(z+y)(z-y)=(x+y+z)(z-y)
(y2+yz+z2)-(x2+xz+z2)=y2-x2+yz-xz=(y+x)(y-x)+z(y-x)=(x+y+z)(y-x)

Omdat x,y en z drie openvolgende termen van een rekenkundige rij zijn is z-y gelijk aan y-x, waarmee het bewijs is geleverd.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 16 maart 2007



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3