De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Tweedegraadsfuncties

Hoeveel natuurlijke getallen zijn het product van 2 reële getallen waarvan het verschil 1 is, als beide getallen tot het interval [1,100] behoren.

Geen idee hoe je hier aan moet beginnen. Kan er iemand me helpen. Dank je wel.

Kevin
2de graad ASO - maandag 27 november 2006

Antwoord

Je hebt x·(x+1)=n, dus x2+x-n=0.
Oplossen levert x=(-1±Ö(1+4n))/2
Iedere natuurlijk getal n waarvoor x en x+1 in [1;100] liggen is in principe een oplossing. Wel even opletten dat je geen paren x en x+1 dubbel telt.

Voorbeeld: n=3:
x=-1/2±1/2Ö13
Kies x=-1/2+1/2Ö13, dan x+1=1/2+1/2Ö13
(-1/2+1/2Ö13)(1/2+1/2Ö13)=-1/4+1/4·13=1/4(-1+13)=1/4·12=3 (inderdaad)
x=-1/2-1/2Ö13 is negatief dus telt niet mee.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 27 november 2006



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3