De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Raaklijnen loodrecht

Ik moet bewijzen dat de beide raaklijnen vanuit een punt op de richtlijn loodrecht op elkaar staan.
De parabool is 1/2cy=x2
De richtlijn y=-1/8c
Nu dacht ik: ik neem het punt (0,-1/8c) op de richtlijn en die vul ik dan in de raaklijn formule in (yy=cx+cx). Dan zouden er toch twee formules uit moeten komen...?? waarbij de rico's vermenigvuldigd -1 moeten zijn?
Is dit wel een goede gedachtengang, want ik kom aan y= 8c2x, als ik het punt invul

iris
Student hbo - vrijdag 6 januari 2006

Antwoord

Het is handiger om een willekeurig punt P op de parabool te nemen. Als je vanuit dit punt de lijn door het brandpunt neemt en snijdt met de parabool, dan heb je een tweede punt Q. De tweede raaklijn gaat dan door Q en staat loodrecht op de eerste (waarom?). Bepaal vervolgens de raaklijnen in beide punten. Snijdt beide raaklijnen en toon aan dat het snijpunt op de richtlijn ligt... zou moeten kunnen.. heb ik gehoord...

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 8 januari 2006



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3