|
|
\require{AMSmath}
Ellips en parabool snijden elkaar loodrecht
Ik moet bewijzen dat de ellips 2x2+y2=a2 en de parabool y2=2px elkaar loodrecht snijden. De eerste stap is dan toch dat je het snijpunt moet berekenen door y2 in de ellips te vervangen door 2px? Dan krijg je: 2x2+2px=a2, maar hoe kom ik er nu achter wat het snijpunt is. Kunnen jullie mij een eindje opweg helpen??
Iris
Student hbo - donderdag 5 januari 2006
Antwoord
Beste Iris,
Je bent goed op weg: los die (kwadratische) vergelijking nu op naar x, dat geeft je de x-coördinaat van het snijpunt (of van de snijpunten). Bepaal dan de bijbehorende y-coördinaten en ga na of in die punten de twee grafieken loodrecht op elkaar staan.
Persoonlijk zie ik misschien nog een andere (mogelijk snellere, makkelijkere...) methode. Bepaal van beide functies eens de gradiënt. Je weet dat als de grafieken in een bepaald punt loodrecht zijn, dat het scalair product van de gradiënten er 0 moet zijn. Druk die voorwaarde eens uit en kijk of er je iets opvalt aan de bekomen vergelijking. Dit zal een vergelijking in x en y zijn waaraan een punt moet voldoen zodat de ellips en de parabool er loodrecht op elkaar zouden staan.
mvg, Tom
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 5 januari 2006
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|