De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Diameter cirkel = nulpunten polynoom

gegeven is het polynoom: x2-ux+v=0
de nulpunten van het polynoom kunnen gevonden worden door een cirkel te tekenen met diameter het lijnstuk van (0,1)tot (u,v). (waarschijnlijk bestaat er wel een naam voor deze methode maar die weet ik niet)
Gegeven: (x-a)2+(y-b)2=r2 is de vergelijking met het middelpunt (a,b) en straal = r

gevraagd: geef bewijs dat de constructie inderdaad de nulpunten oplevert van de 2e graads vergelijking.

om heel eerlijk te zijn snap ik er geen sikkepit van

Perune
Leerling bovenbouw havo-vwo - donderdag 15 december 2005

Antwoord

Het miden van het lijnstuk met eindpunten (0,1) en(u,v) is (1/2u,1/2(v+1))
Dus in (x-a)2+(y-b)2=r2 geldt a=1/2u en b=1/2(v+1)
De lengte van het lijnstuk door de punten (0,1) en(u,v) is Ö(u2+(v-1)2)
Dus in (x-a)2+(y-b)2=r2 geldt r=1/2Ö(u2+(v-1)2), dus r2=1/4(u2+(v-1)2)
Vul dit allemaal in in de vergelijking van de cirkel.
(x-1/2u)2+(y-1/2(v+1))2=1/4(u2+(v-1)2)
Stel nu y=0: (oftewel bepaal de snijpunten van de cirkel met de x-as):
(x-1/2u)2+(-1/2(v+1))2=1/4(u2+(v-1)2)
Uitwerken levert:
x2-ux+1/4u2+1/4(v2+2v+1)=1/4u2+1/4(v2-2v+1)
x2-ux+1/4u2+1/4v2+1/2v+1/4=1/4u2+1/4v2-1/2v+1/4
Dus
x2-ux+v=0
Oftewel de nulpunten van de cirkel voldoen aan de vergelijking x2-ux+v=0. En dat was waar we mee begonnen.
Je kunt dus de nulpunten van het polynoom construeren door de cirkel met genoemde eigenschappen te construeren en deze cirkel te snijden met de x-as.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 15 december 2005



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3