De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Complexe integraal

Ik heb een complexe integraal (bij het vak complexe functie theorie), waar ik niet uit kom. De integraal is:
pi
òdt/(a+cos(t))^2
0

In onderdeel a heb ik al berekend wat de integraal van

pi
òdt/(a+cos(t))
0

Dit heb ik gedaan dor cos(t) te vervangen door 1/2*(exp(it)+exp(-it)) en vervolgens een subsitutie exp(it) te vervangen door y. Als je dan met y vermenigvuldigt, is met de stelling van Cauchy het antwoord pi/sqrt(a^2-1).
Het lijkt me dat mijn gevraagde integraal op ongeveer dezelfde manier moet, maar hoe?

Erik
Student universiteit - dinsdag 28 juni 2005

Antwoord

Erik,
(a+cost)2=(z2+2az+1)2/(4z2),met z(t)=e^it, dus de integraal wordt
-4iòzdz/(z2+2az+1)2.Tweevoudige polen zijn z(1)=-a+Ö(a2-1)
en z(2)=-a-Ö(a2-1).Nu is b.v Res f(z(1))=g'(z(1))=a/(4(a2-1)^3/2)
met g(z)=(z-z(1))2f(z) met f(z) de integrand.
Hopelijk weet je nu de weg.
Groetend,

kn
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 29 juni 2005



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3