De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Bepaal de matrix van lineaire afbeelding

Beschouw de lineaire afbeelding G van $\mathbf{R}$3 naar $\mathbf{R}$3 die bestaat uit een draaiing over $\pi$ rond de z-as, gevolgd door een puntspiegeling tov de oorsprong, die daarna weer wordt gevolgd door een vermenigvuldiging met het getal 3

Bepaald de matrix van deze lineaire afbeelding G.

Hoe moet ik dit aanpakken, want ik kan me er moeilijk een voorstelling bij maken?

dj
Student hbo - vrijdag 4 juni 2004

Antwoord

De matrix van G is gelijk aan de vermenigvuldiging van drie matrices:
V: de vermenigvuldiging
S: de puntspiegeling
R: de rotatie.
Dus (als ik even de naam van de afbeelding gelijk stel aan de naam van de matrices):
G = V·S·R
Snap je de volgorde?
Kun je van V, S en R de matrix opstellen?
Dan zal G geen probleem meer zijn.
succes,

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 4 juni 2004
 Re: Bepaal de matrix van lineaire afbeelding 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3