De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Domino-principe

Ik kreeg laatst op mijn tentamen de vraag: Bewijs met volledige inductie (domino-principe) dat de rij met voorschrift [u][/n]=[4][/n]/n! daalt vanaf een bepaalde term. Ik kwam hier zelf niet uit...kunnen jullie mij hulp bieden,
alvast bedankt Tom

Tom
Student hbo - dinsdag 13 april 2004

Antwoord

Hallo Tom,

De vraag is niet helemaal goed doorgekomen, ik vermoed dat je bedoelt un=4n/n! Je moet die [ sub] en [ /sub] laten staan en daartussen typen wat er in subscript moet komen.

Volledige inductie is hier niet bepaald de makkelijkste manier om dit te bewijzen, veel simpeler is op te merken dat het quotiënt un+1/un1.

En dat quotiënt is:
4n+1/(n+1)! / (4n/n!)
= 4n+1n! / (4n)(n+1)!
= 4/(n+1)
1 als n3

Nu met volledige inductie: dan moet je de stelling bewijzen voor één specifiek geval (reken uit dat u5u4).

En daarna moet je bewijzen dat, als het geldt voor n, het ook geldt voor n+1.

Maw: gegeven unun+1 (*)
Te bewijzen: un+1un+2
Bewijs:
un+2
= un+1*4/(n+2) (wegens def u)
un*4/(n+2) (wegens (*))
un*4/(n+1) (noemer verkleinen vergroot de breuk)
= un+1 (wegens def u)

Dus un+2 un+1

Groeten,
Christophe.

Christophe
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 13 april 2004



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3