in een parallellogram abcd is e een punt van ab en f een punt van cd. De rechten bf en ce snijden elkaar in p, de rechten af en de snijden elkaar in q. Bewijs dat het snijpunt van de diagonalen van abcd op de rechte pq ligt.Valera
16-4-2003
Nogmaals hallo, Valera,
Ik denk dat je deze best oplost met coördinaten: noem d(0,0), c(c,0), a(a1,a2), b(c+a1,a2). Dan heeft e coördinaten (e,a2) en f(f,0). Je kan dan de vergelijking van af opstellen (ja, je kan dat :-)), dat geeft y(a1-f) = (x-f)a2. En voor de: y = a2 x/e. Dat geeft je de coördinaten van q (stelseltje oplossen). Hetzelfde doe je voor ce en bf om p te bekomen, en voor ac en bd om het snijpunt m van de diagonalen te krijgen. Om te controleren of die collineair zijn kan je dan de vergelijking van de rechte pq opstellen, en controleren of de coördinaten van m aan die vergelijking voldoen. Tzal wel wat werk zijn, maar ik zie niet direct een meetkundig bewijs dat makkelijker zou zijn.
Succes!
Christophe
16-4-2003
#9988 - Bewijzen - 3de graad ASO