Het probleem lag ook niet bij P(3 vogelverschrikkers), die begreep ik wel, mijn probleem lag bij P(2 vogelverschrikkers) = 3*(1/4)2 * 3/4 waarom (1/4)2, want de kans dat er een vogelverschikker op het kraslot staat is (1/4) en je hebt drie loten, en die 3/4 is de kans bij de andere 3 mogelijkheden, met gelijke kans. Dus nu is mijn vraag nog eigenlijk, waar is het 3*(1/4)2. Is dat soms omdat je uitgaat van 2 vogelverschrikkers? Zo ja, dan snap ik het zo nee dan snap ik het niet! Alvast bedanktMarieke van Basten
12-4-2003
Als je drie loten hebt met twee vogelverschrikkers dan zijn er 3 verschillende volgordes te bedenken! Soms is het handig om eerst naar één zo'n volgorde te kijken.
Voorbeeld
Wat is de kans op VVN (V=vogelverschrikker en N=niet)? Dus precies op die volgorde!
P(V,V,N)=1/4·1/4·3/4
Klaar!
Maar dit is niet de enige mogelijkheid! Ik had ook VNV of NVV kunnen hebben die zijn namelijk ook goed! Het zal je niet verbazen, maar die hebben stuk voor stuk ook allemaal een kans van 1/4·1/4·3/4.
Als je dat eenmaal weet kan je dit soort problemen ook zo aanpakken.Ik geef je nog een voorbeeld en dan snap je het!
- Bereken eerst de kans op één bepaalde volgorde (dat was (1/4)2·3/4)
- Bepaal hoeveel volgordes je kan maken (dat was 3)
- Vermenigvuldig de kans van 1. met het aantal mogelijkheden van 2.
Voorbeeld 2
In een vaas zitten 8 witte, 4 blauwe en 2 rode ballen. We trekken steeds drie ballen uit de vaas zonder terugleggen.Antwoord
- Bereken de kans op 2 witte ballen.
- Bereken de kans op 3 verschillend gekleurde ballen.
Hopelijk lukt het nu!?
- Er zijn eigenlijk twee soorten ballen: witte en niet-witte. Wat is nu de kans op (precies)
twee witte ballen? Er zijn nu verschillende mogelijkheden: de eerste 2 ballen kunnen wit zijn en
de derde niet, de eerste en de derde kunnen wit zijn, enzovoort....
Om de kans uit te rekenen kun je kijken naar één zo'n volgorde. We nemen maar wit, wit, niet-wit.
We kijken naar P(w,w,n), dus de kans op precies die volgorde!
P(w,w,n) = 8/14·7/13·6/12 = 2/13
Vervolgens kijk je hoeveel verschillende volgordes je kunt maken met twee witte en een niet-witte.
Dit kan op 3 verschillende manieren, dus de kans op precies twee witte ballen is 3·2/13 = 6/13
Dit is een patroon dat je vaak zult tegenkomen:- Ook hier kun je deze methode handig gebruiken:
Zie Statistiek en kansrekenen [http://www.wiswijzer.nl/pagina.asp?nummer=983]
WvR
12-4-2003
#9794 - Kansrekenen - Leerling bovenbouw havo-vwo