Als je x(t) = cos(t) + sin(2t) hebt en je wil x(t) = 0 weten waarom kan het volgende dan niet?
cos(t) = -sin(2t)
cos(t) = sin(2t + $\pi$)
cos(t) = sin(2t + 1/2 $\pi$)
t = 2t + 1/2 $\pi$ + k x 2$\pi$ v t = -2t - 1/2$\pi$ + k x 2 $\pi$
t = -1/2 $\pi$ + k x 2 $\pi$ v t = -1/6 $\pi$ + k x 2/3 $\pi$Tim
25-2-2023
Volgens mij gaat het aardig goed. Ik zou 't zo doen:
$
\eqalign{
& \cos (t) + \sin (2t) = 0 \cr
& \cos (t) = - \sin (2t) \cr
& \cos (t) = \sin ( - 2t) \cr
& \cos (t) = \cos \left( {\frac{1}
{2}\pi + 2t} \right) \cr
& t = \frac{1}
{2}\pi + 2t + k \cdot 2\pi \vee t = - \frac{1}
{2}\pi - 2t + k \cdot 2\pi \cr
& - t = \frac{1}
{2}\pi + k \cdot 2\pi \vee 3t = - \frac{1}
{2}\pi + k \cdot 2\pi \cr
& t = - \frac{1}
{2}\pi + k \cdot 2\pi \vee t = - \frac{1}
{6}\pi + k \cdot \frac{2}
{3}\pi \cr
& t = 1\frac{1}
{2}\pi + k \cdot 2\pi \vee t = \frac{1}
{2}\pi + k \cdot \frac{2}
{3}\pi \cr}
$
De laatste regel is niet noodzakelijk maar wel gebruikelijk. Overigens kan je zelf je gevonden oplossingen controleren. Het is allemaal één pot nat...
Helpt dat?
WvR
25-2-2023
#97599 - Goniometrie - Leerling bovenbouw havo-vwo