WisFaq!

\require{AMSmath} geprint op zondag 24 november 2024

Taylorpolynomen restterm

Ik heb een vraag over de taylorpolynomen. Bij het benaderen van een getal mbv een taylorpolynoom heb je een restterm. Voor het berkenen van de restterm gebruiken we Rn(x) = (fn+1(s))/((n+1)) · (x-a)n+1. Ik begrijp echter niet hoe de s wordt gekozen bij het berekenen van de restterm. Kan iemand mij dit uitleggen?

Plinna
7-12-2022

Antwoord

De $s$ wordt niet gekozen; de stelling zegt dat er een $s$ bestaat, tussen $a$ en $x$ (en afhankelijk van $x$ en van $n$) zó dat
$$f(x)=T_n(x) +R_n(x)
$$Je gebruikt dit om $R_n(x)$ af te schatten, niet om hem te berekenen.
Bijvoorbeeld:
$$\sqrt x= 1+\frac12(x-1)+R_1(x)
$$met
$$R_1(x) = -\frac14s^{-\frac32}\cdot\frac1{2!}(x-1)^2
$$Dat vertelt ons bijvoorbeeld dat $\sqrt x < 1+\frac12(x-1)$ als $x\neq1$.
Nu kun je $\sqrt{\frac32}$ benaderen met $1+\frac12(\frac32-1)=1+\frac14$.
En $R_1(\frac32)$ kun je afschatten, eerst $x=\frac32$ invullen:
$$-\frac18\cdot s^{-\frac32}\cdot\frac14 = -\frac1{32}\cdot s^{-\frac32}
$$Van $s$ weet je alleen dat $1 < s < \frac32$, dus het beste wat je kunt zeggen is dat $s^{-\frac32}$ kleiner dan $1$ is.
En dus in ieder geval
$$\frac54 > \sqrt{\frac32} > \frac54-\frac1{32}
$$

kphart
7-12-2022


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#97450 - Differentiëren - Student universiteit