WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Re: Volume in een glas met omgekeerde kegelvorm

Dank voor de respons.
Wat betreft de factor 1/3:
Ik dacht met de afgeleide deze te gebruiken om te laten wentelen om de as zodat 1/3 niet nodig is.
Verkeerd gedacht?

Marc BOLLE
10-10-2022

Antwoord

Kennelijk verkeerd gedacht, want het antwoord klopt niet. Als je aan het begin van jouw punt 2 de waarden $C=2$ en $h=10$ had ingevuld in $\pi/c^2h^3$ dan had je $785.39$ als antwoord gekregen en dat is dus fout.

Je kunt ook wentelen maar dan moet je het wel goed doen.
Uit de gegevens volgt dat de kegel ontstaat door de grafiek van $y=\frac12x$ om de $x$-as te wentelen (of $r=\frac12h$ om de $h$-as). De algemene wentelformule is
$$\int_a^b\pi f(x)^2\,\mathrm{d} x
$$en dat wordt hier dus
$$\int_0^{10}\pi\cdot\frac 14x^2\,\mathrm{d}x
$$dezelfde integraal als de vorige keer.

kphart
10-10-2022


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#97292 - Integreren - Iets anders