WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Raakpunt p bepalen

De raaklijn t aan de grafiek van de functie f(x) = x3 + 2x2 - 36 gaat door de oorsprong. Bepaal de coördinaat van het raakpunt P. Met deze vraag heb ik een probleem. Ik heb de vergelijking van een rechte door de oorspong al gelijk gesteld met de functie f(x) en vervolgens x vervangen door a. Hier komt wel iets uit maar niet de oplossing. Ook heb ik al met afgeleiden zitten werken en dan gelijkgesteld aan de afgeleide van de functie door de oorsprong maar het juiste antwoord wilt maar niet komen. Wat nu? Kan iemand helpen aub?

Gert
23-3-2022

Antwoord

Hallo Gert,

Voor de raaklijn geldt de formule:

y=a·x

In het raakpunt geldt:
Ofwel:
a·x = x3+2x2-36 (vgl. 1)
a = 3x2+4x (vgl. 2)

Vermenigvuldig vergelijking 2 met x:
a·x = 3x3+4x2

Dit moet gelijk zijn aan vgl. 1:

3x3+4x2 = x3+2x2-36

Dus:

2x3+2x2+36=0
x3+x2+18=0

Hieruit volgt de x-coördinaat xrvan het raakpunt:

xr = -3

Invullen in f(x) levert de y-coördinaat van het raakpunt:

f(-3) = -45

Dus de coördinaten van het raakpunt zijn (-3 , -45)

GHvD
23-3-2022


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#93481 - Functies en grafieken - 3de graad ASO