WisFaq!

\require{AMSmath} geprint op zondag 24 november 2024

De richtingscoëfficiënt bepalen bij een raakpunt

Hallo allemaal, ik ben momenteel met afgeleiden en dergelijken bezig maar er is een vraag waarover ik niet uit ben. De rechte met vergelijking y = ax - 1 is een raaklijn aan de grafiek van de functie f(x) = x2 + 2. Ik heb al geprobeerd door a gelijk te stellen aan 2x en die x vervolgens in te vullen in de oorspronkelijke functie f(x) maar ik kom maar niet op het juiste resultaat. Kan iemand me helpen a te vinden?

Gert
23-3-2022

Antwoord

Je kunt het snijpunt van $f$ met de raaklijn berekenen en eisen dat er precies één snijpunt is.

$
\eqalign{
& x^2 + 2 = ax - 1 \cr
& x^2 - ax + 3 = 0 \cr
& D = \left( { - a} \right)^2 - 4 \cdot 1 \cdot 3 = a^2 - 12 \cr}
$

De discriminant bij raken is nul. Dat geeft je dan twee mogelijke waarden van $a$.

Lukt dat zo?

WvR
23-3-2022


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#93480 - Functies en grafieken - 3de graad ASO