WisFaq!

\require{AMSmath} geprint op donderdag 21 november 2024

Oppervlakte van een driehoek

Gegeven is driehoek ABC met hoek C=90°. In de driehoek zijn de hoogtelijn KC, de bissectrice LC en de zwaartelijn MC getekend. KL = 2 en LM = 3.
Bereken de oppervlakte.

Begin van eventuele uitwerking:
LB: AL = BC: AC (bissectricestelling)
driehoek KBC ~ driehoek CBA (hh)

Marieke Buijs
31-3-2003

Antwoord

Oef, een fraai, maar toch wel lastig vraagstuk.
Ik ben voor de oplossing aan het rekenen geslagen.
Je begin is in ieder geval juist. Ik maak er gebruik van.
Ik stel BK gelijk aan x.
De zijde c heeft daardoor de lengte 2x + 10.
Dus hebben we volgens Pythagoras:
a2 + b2 = (2x + 10)2
Volgens de bissectricestelling is dan:
(x + 2) : (x + 8) = a : b
En uit de door jou genoemde gelijkvormige driehoeken volgt dan:
x : a = a : (2x + 10)
Je ziet, we hebben drie vergelijkingen met drie onbekenden.
Het is nu mogelijk een vergelijking op te stellen waarin de a en de b niet voorkomen.
Volgens mij is dat (zoek je dit zelf even uit?):
x2 + 10x - 20 = 0
Deze vergelijking levert de x.
En daarmee heb je dan de waarde van a en b, en daarmee weer de oppervlakte.
Ik vraag me nu bij het opschrijven van het bovenstaande eigenlijk af of het niet korter kan...

dk
1-4-2003


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#9258 - Oppervlakte en inhoud - Leerling bovenbouw havo-vwo