Hi ik moet de volgende vectorvoorstelling herschrijven naar een vergelijking voor een vlak maar ik snap niet zo goed hoe.
$
\left( {\begin{array}{*{20}c}
x \\
y \\
z \\
\end{array}} \right) = \left( {\begin{array}{*{20}c}
1 \\
{ - 2} \\
3 \\
\end{array}} \right) + \lambda \left( {\begin{array}{*{20}c}
{ - 2} \\
1 \\
3 \\
\end{array}} \right) + \mu \left( {\begin{array}{*{20}c}
2 \\
{ - 4} \\
4 \\
\end{array}} \right)
$Felice
21-6-2021
Je kunt:
$
\left( {\begin{array}{*{20}c}
x \\
y \\
z \\
\end{array}} \right) = \left( {\begin{array}{*{20}c}
1 \\
{ - 2} \\
3 \\
\end{array}} \right) + \lambda \left( {\begin{array}{*{20}c}
{ - 2} \\
1 \\
3 \\
\end{array}} \right) + \mu \left( {\begin{array}{*{20}c}
2 \\
{ - 4} \\
4 \\
\end{array}} \right)
$
schrijven als:
$
\left\{ \begin{array}{l}
x = 1 - 2\lambda + 2\mu \\
y = - 2 + \lambda - 4\mu \\
z = 3 + 3\lambda + 4\mu \\
\end{array} \right.
$
Vervolgens kan je dan proberen de $
\lambda
$'s en de $
\mu
$'s kwijt te raken. Dat doe je op dezelfde manier waarom je normaal gesproken een stelsel van vergelijkingen oplost.Lukt dat zo?
WvR
21-6-2021
#92444 - Lineaire algebra - Student hbo