WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Integraal berekenen van oneven functie

Beste,
Ik zit vast bij het volgende vraagstuk:

Zij f : R → R een afleidbare functie met continue afgeleide en f(8) = 9. Veronderstel dat f(4 + x) = −f(4 − x) voor alle x ∈ R. Waaraan is int(x*f'(x))dx met ondergrens 0 en bovengrens 8 dan gelijk? (mijn excuses, weet niet hoe ik deze integraal correct noteer op deze site)

Vermits f(x+4)=-f(4-x) en f(8)=9 is, is f(0)=-9. Ik weet dat de oppervlakte onder de grafiek voor x gaande van 0 tot 4, gelijk is aan de oppervlakte van x gaande van 4 tot 8. Hoe kan ik deze integraal verder oplossen?

Alvast bedankt!

ano
29-3-2021

Antwoord

Twee opmerkingen om je verder te helpen:

Integraal van een product, dat vraagt hier om partieel integreren.
Pas dat toe op $\int{}$x·f'(x) dx = x·f(x)|08 - $\int{}$1·f(x) dx
Die laatste weet je want die oppervlakten zijn gelijk van 0 tot 4 en van 4 tot 8 maar bij de integraal wordt de ene negatief gerekend en de ander positief dus .........

Zou het hiermee lukken?

Met vriendelijke groet
JaDeX

jadex
30-3-2021


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#91851 - Functies en grafieken - 3de graad ASO