Gegeven: (√2+1)5 + (√2-1)5
Hoe kan ik deze vraag oplossen?Riffat
12-12-2020
Er geldt:
$
\left( {\sqrt 2 + 1} \right)^5 = \sum\limits_{k = 0}^5 {\left( {\begin{array}{*{20}c}
5 \\
k \\
\end{array}} \right)} \cdot \left( {\sqrt 2 } \right)^{5 - k}
$
en
$
\left( {\sqrt 2 - 1} \right)^5 = \sum\limits_{k = 0}^5 {\left( {\begin{array}{*{20}c}
5 \\
k \\
\end{array}} \right)} \cdot \left( {\sqrt 2 } \right)^{5 - k} \cdot \left( { - 1} \right)^k
$
Als je die uitdrukkingen uitwerkt zul je zien dat als je die bij elkaar optelt de helft wegvalt. De rest kan je dan verder uitschrijven en dat geeft je de oplossing.
WvR
12-12-2020
#91162 - Telproblemen - 3de graad ASO