Dag Klaas Pieter ,
Uw opmerking over de noemer van de som regel=2 is terecht
Oplossing
gegeven:
Er zijn n termen in de RR
t(1)=4 en n=17 stapeltjes munten .
t(n)=t(1)=(n-1)v (v= verschil van term tot term.
t(n)=4+(n-1)v
S(17)=
340 = 17(4+4+(17-1)v=(17(8+16v)/2
680= 136+272v
v= (680-136)/272= 2
n(17) =4+32=36
De 16 de stapel =n(17-1)=17-1 =16
36-2 =34 kubusblokjes.(omdat v=2 gevonden werd
Het kostte wat moeite maar het is "gelukt" .Of is er nog een opmerking hier en daar aan toe te voegen?
Groeten en fijn weekend
Rik
Rik Lemmens
24-10-2020
Het ziet er goed uit, maar wel met wat tikfouten: een $=$ die een $+$ moet zijn (bij de eerste $t(n)$) en hier en daar haakjes niet in evenwicht: bij $340={}$.
kphart
25-10-2020
#90778 - Rijen en reeksen - Iets anders