Nee sorry, ik begrijp het nog steeds niet. Zou je het helemaal willen uitwerken ? Hoe kom je aan die laatste stap en hoe ga je dan verder? Ik zou als uitkomst f'(x)=2/(1-x2) moeten krijgen.Melike
23-10-2020
Ik heb twee uitwerkingen voor je. Een met de quotiëntregel en een uitwerking met de rekenregels van de logaritmen. Dat laatste wil nog wel 's handig zijn.
I.
$
\eqalign{
& f(x) = \ln \left( {\frac{{1 + x}}
{{1 - x}}} \right) \cr
& f'(x) = \frac{1}
{{\frac{{1 + x}}
{{1 - x}}}} \cdot \left( {\frac{{1 \cdot \left( {1 - x} \right) - (1 + x) \cdot - 1}}
{{\left( {1 - x} \right)^2 }}} \right) \cr
& f'(x) = \frac{1}
{{\frac{{1 + x}}
{{1 - x}}}} \cdot \left( {\frac{{1 - x + 1 + x}}
{{\left( {1 - x} \right)^2 }}} \right) \cr
& f'(x) = \frac{1}
{{\frac{{1 + x}}
{{1 - x}}}} \cdot \frac{2}
{{\left( {1 - x} \right)^2 }} \cr
& f'(x) = \frac{{1 - x}}
{{1 + x}} \cdot \frac{2}
{{\left( {1 - x} \right)^2 }} \cr
& f'(x) = \frac{1}
{{1 + x}} \cdot \frac{2}
{{1 - x}} \cr
& f'(x) = \frac{2}
{{(1 + x)(1 - x)}} \cr
& f'(x) = \frac{2}
{{1 - x^2 }} \cr}
$
II.
$
\eqalign{
& f(x) = \ln \left( {\frac{{1 + x}}
{{1 - x}}} \right) \cr
& f(x) = \ln (1 + x) - \ln (1 - x) \cr
& f'(x) = \frac{1}
{{1 + x}} - \frac{1}
{{1 - x}} \cdot - 1 \cr
& f'(x) = \frac{1}
{{1 + x}} + \frac{1}
{{1 - x}} \cr
& f'(x) = \frac{1}
{{1 + x}} \cdot \frac{{1 - x}}
{{1 - x}} + \frac{1}
{{1 - x}} \cdot \frac{{1 + x}}
{{1 + x}} \cr
& f'(x) = \frac{{1 - x + 1 + x}}
{{(1 + x)(1 - x)}} \cr
& f'(x) = \frac{2}
{{(1 + x)(1 - x)}} \cr
& f'(x) = \frac{2}
{{1 - x^2 }} \cr}
$
Je moet maar kijken wat je wel of niet begrijpt en dan maar weer vragen. Lukt dat?
WvR
23-10-2020
#90766 - Differentiëren - Student universiteit België