$
f(x) = (2 - 3x)^5 \cdot \sqrt {2 - 3x}
$Riffat
24-9-2020
Schrijf de functie als $f(x)=(2-3x)^{5\frac{1}{2}}$. Je krijgt dan:
$
\eqalign{
& f(x) = (2 - 3x)^5 \cdot \sqrt {2 - 3x} \cr
& f(x) = (2 - 3x)^5 \cdot \left( {2 - 3x} \right)^{\frac{1}
{2}} \cr
& f(x) = (2 - 3x)^{5\frac{1}
{2}} \cr
& f'(x) = 5\frac{1}
{2}(2 - 3x)^{4\frac{1}
{2}} \cdot - 3 \cr
& f'(x) = - 16\frac{1}
{2}(2 - 3x)^4 \cdot \sqrt {2 - 3x} \cr}
$
Je kunt ook de productregel gebruiken. Dat is wel een aardige oefening:
$
\eqalign{
& f(x) = (2 - 3x)^5 \cdot \sqrt {2 - 3x} \cr
& f'(x) = 5(2 - 3x)^4 \cdot - 3 \cdot \sqrt {2 - 3x} + (2 - 3x)^5 \cdot \frac{1}
{{2\sqrt {2 - 3x} }} \cdot - 3 \cr
& f'(x) = - 15(2 - 3x)^4 \cdot \sqrt {2 - 3x} - \frac{{3(2 - 3x)^5 }}
{{2\sqrt {2 - 3x} }} \cr
& f'(x) = - 15(2 - 3x)^{4\frac{1}
{2}} - 1\frac{1}
{2}(2 - 3x)^{4\frac{1}
{2}} \cr
& f'(x) = - 16\frac{1}
{2}(2 - 3x)^{4\frac{1}
{2}} \cr
& f'(x) = - 16\frac{1}
{2}(2 - 3x)^4 \cdot \sqrt {2 - 3x} \cr}
$
WvR
24-9-2020
#90531 - Differentiëren - 3de graad ASO