WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Buigpunten berekenen

Hoe bereken ik de buigpunten van (x+1)2·ex
De tweede afgeleide berekenen f'(x+1)2·ex
f' opnieuw de produktregel toepassen x2+4x+3·ex=0
Hoe bereken ik nu de nulpunten?
mvgr Edward

Edward
17-6-2020

Antwoord

Haakjes!

$
\eqalign{
& f(x) = (x + 1)^2 \cdot e^x \cr
& f'(x) = \left( {x^2 + 4x + 3} \right) \cdot e^x \cr
& f''(x) = \left( {x^2 + 6x + 7} \right) \cdot e^x \cr}
$

...en dan de tweede afgeleide op nul stellen, mogelijke kandidaten vaststellen, tekenverloop maken en je conclusies trekken...?

WvR
17-6-2020


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#90116 - Differentiëren - Leerling bovenbouw havo-vwo