Beste
Stel dat we een recht L hebben door de oorsprong die een hoek a maakt met de positieve x-as. Gevraagd is om de matrix van de spiegeling rond L te bepalen. Wel mijn vraag is waarom moet je de r(0,a) maal Sx maal r(0,-a) doen en niet r(0,-a) maal Sx maal r(0,a). Wat bepaalt deze volgorde juist?
Met vriendelijke groetenRafik Yeghoyan
20-11-2019
De hoofdreden is wel dat de eerste correct is en de tweede niet. Kijk maar wat de tweede met het punt $(1,0)$ doet als $\alpha=\frac\pi4$ bijvoorbeeld: eerst draaien naar $(\frac12\sqrt2,\frac12\sqrt2)$ dan spiegelen in de $x$-as naar $(\frac12\sqrt2,-\frac12\sqrt2)$ en dan draaien naar $(0,-1)$; dan is niet wat de spiegeling zou moeten doen.
Het is bij afbeeldingen altijd zo dat je de operaties van rechts naar links leest omdat de operatie die het dichtst bij het argument staat eerst uitgevoerd moet worden.
kphart
20-11-2019
#88698 - Lineaire algebra - 3de graad ASO