De baan van P is gegeven door xp(t)=5·cos(t) en yp(t)=6·sin(t).
De baan van Q is gegeven door xq(t)=3·sin(t)+2 en yq(t)=4·cos(t)+3.
Op een plot zie ik twee snijpunten van de banen.
Ik weet niet hoe ik exact de coördinaten ervan moet bepalen. Ik weet ook niet of dit mogelijk is.
Als dat niet mogelijk is, hoe pak het dan aan met de grafische rekenmachine?
M Claassen
30-9-2019
Voor de punten (x,y) op de baan van P geldt:
cos2(t)=(x/5)2 en
sin2(t)=(y/6)2
Optellen levert:
(x/5)2 + (y/6)2 = 1
Dit is de standaard vergelijking van een ellips, de punten liggen op een ellips met middelpunt (0, 0), een verticale lange as 6 en horizontale korte as 5 (maar dat zagen we misschien wel aankomen).
Op dezelfde wijze vinden we een ellips voor de baan van Q:
((x-2)/3)2 + ((y-3)/4)2 = 1
Dit is een ellips met middelpunt (2, 3), een verticale lange as 4 en een horizontale korte as 3.
De snijpunten vind je bijvoorbeeld door in de vergelijking van de eerste ellips de variabele x te isoleren en het resultaat in de vergelijking van de tweede ellips in te vullen. Het resultaat is een kwadratische vergelijking in y, je kunt twee oplossingen verwachten. Dat is een heel werkje, maar dan heb je ook wat.
GHvD
30-9-2019
#88521 - Krommen - Docent