Hi, ik krijg de volgende functie maar niet geprimitiveerd dmv de substitutiemethode kunt me helpen?
Bepaal de primitieve functies van:
f(x)=x2/(2x3+1)mboudd
18-9-2019
Als het goed is zie je in de teller 'bijna' de afgeleide staan van de noemer. Je kunt dan als volgt te werk gaan:
$
\eqalign{
& \int {\frac{{x^2 }}
{{2x^3 + 1}}\,dx = } \cr
& \int {\frac{1}
{6} \cdot \frac{1}
{{2x^3 + 1}} \cdot 6x^2 \cdot dx = } \cr
& \int {\frac{1}
{6} \cdot \frac{1}
{{2x^3 + 1}} \cdot d\left( {2x^3 + 1} \right) = } \cr
& Neem\,\,u = 2x^3 + 1 \cr
& \int {\frac{1}
{6} \cdot \frac{1}
{u}du} = \cr
& \frac{1}
{6}\ln (u) + C = \cr
& \frac{1}
{6}\ln \left( {2x^3 + 1} \right) + C \cr}
$
Op 2. Substitutiemethode had je daar al voorbeelden van gezien.
WvR
18-9-2019
#88460 - Integreren - Leerling mbo