WisFaq!

\require{AMSmath} geprint op donderdag 21 november 2024

Re: Afgeleide bepalen

Oké! Een differentiaalvergelijking heb ik nog niet geleerd, maar ik begrijp in uw berekening van de afgeleide bepalen niet hoe u tot de 2e stap komt. DFie · 1/(t·1/2). Welke regel gebruikt u daar?

Groetjes,
Stijn

Stijn
1-4-2019

Antwoord

Dat is de 4. Kettingregel.

$
\eqalign{
& f(x) = 2^{\frac{t}
{5}} \cr
& f'(x) = 2^{\frac{t}
{5}} \cdot \ln (2) \cdot \frac{1}
{5} \cr
& f'(x) = \frac{1}
{5}\ln (2) \cdot 2^{\frac{t}
{5}} \cr}
$

Of ook:

$
\eqalign{
& f(x) = 2^{\frac{t}
{5}} \cr
& f(x) = 2^{\frac{1}
{5}t} \cr
& f'(x) = 2^{\frac{1}
{5}t} \cdot \ln (2) \cdot \frac{1}
{5} \cr
& f'(x) = \frac{1}
{5}\ln (2) \cdot 2^{\frac{1}
{5}t} \cr}
$

WvR
1-4-2019


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#87822 - Differentiëren - Cursist vavo