Ik raak bij het differentiëren in de knoop bij de volgende opgave:
Differentieer:
- f(x)=(sinx-cosx)/(sinx+cosx)
mbouddou
10-3-2019
Gewoon flink doorschrijven en de haakjes wegwerken:
$
\eqalign{
& f(x) = \frac{{\sin (x) - \cos (x)}}
{{\sin (x) + \cos (x)}} \cr
& f'(x) = \frac{{\left( {\cos (x) - - \sin (x)} \right)\left( {\sin (x) + \cos (x)} \right) - (\sin (x) - \cos (x))\left( {\cos (x) - \sin (x)} \right)}}
{{\left( {\sin (x) + \cos (x)} \right)^2 }} \cr
& f'(x) = \frac{{\left( {\cos (x) + \sin (x)} \right)\left( {\sin (x) + \cos (x)} \right) + (\sin (x) - \cos (x))\left( {\sin (x) - \cos (x)} \right)}}
{{\left( {\sin (x) + \cos (x)} \right)^2 }} \cr
& f'(x) = \frac{{\left( {\sin (x) + \cos (x)} \right)^2 + (\sin (x) - \cos (x))^2 }}
{{\left( {\sin (x) + \cos (x)} \right)^2 }} \cr
& f'(x) = \frac{{\sin ^2 (x) + 2\sin (x)\cos (x) + \cos ^2 (x) + \sin ^2 (x) - 2\sin (x)\cos (x) + \cos ^2 (x)}}
{{\left( {\sin (x) + \cos (x)} \right)^2 }} \cr
& f'(x) = \frac{{\sin ^2 (x) + \cos ^2 (x) + \sin ^2 (x) + \cos ^2 (x)}}
{{\left( {\sin (x) + \cos (x)} \right)^2 }} \cr
& f'(x) = \frac{{1 + 1}}
{{\left( {\sin (x) + \cos (x)} \right)^2 }} \cr
& f'(x) = \frac{2}
{{\left( {\sin (x) + \cos (x)} \right)^2 }} \cr}
$
't Is een leukerd...
WvR
10-3-2019
#87721 - Differentiëren - Leerling mbo