Als aanvulling heb ik nog een vraag:
De kans dat situatie C zich voordoet is 0,12 (niet meegenomen in de kansrekening).
Als ik nu wil weten hoe groot de kans is dat in een gegeven reeks van A-B-A-B etc. C zich niet voordoet. dien ik dan de uitkomst van bovenstaande berekening nogmaals te vermenigvuldigen met de kans dat C zich niet voordoet in een reeks van x aantal getallen?
Alvast dank.Reinout
22-2-2019
De kans dat C zich niet voordoet in een reeks van $n$ letters is $0,88^n$. Dat is een vrij eenvoudig toepassing van de productregel en de complementregel: P(niet C)=1-P(C). De kans op geen C in een reeks van 16 letters is dan 12,9%. Dat is ook $P(16A)+P(15A1B)+P(14A2B)+...+P(2A14B)+P(1A15B)+P(16B)$.
js2
25-2-2019
#87659 - Kansrekenen - Iets anders