Microsoft Excel heeft 3 uur nodig om de booglengte v/e ellips numeriek met Riemann te berekenen. Dan reken ik voor tan(.99999pi/2)=1E03 en delta rechthoekjes =1E-05. Voor bijv een halve cirkel is het resultaat 3,139...... Niet exact pi dus.
Hebben jullie op de TU Delft snellere computers die met bv tan(.999999999999pi/2)=1E15 en delta=1E-10 kunnen rekenen?
Alvast dank en mvg,Herman
12-2-2019
Nee, zilke goede computers hebben we niet en dat kun je zelf beredeneren: je wilt $2\times\pi\times10^{10}$ stapjes doen; met, zeg, honderduizend stapjes per seconde kost dat ruim zeshonderduizend sekonden en dat is ongeveer een week.
Overigens, ik zie niet waar die $\tan\frac\pi2$ vandaan komt, je oorspronkelijke integraal
$$
a(1-e^2)\int_{-\pi}^\pi\frac{\sqrt{1+e^2+2e\cos x}}{(1+e\cos x)^2}\,\mathrm{d}x
$$is vrij tam en de meeste numerieke methoden benaderen hem vrij snel. Kijk maar eens naar deze twee: de Trapeziumregel en de Regel van Simpson.
En je hoeft alleen maar van $0$ tot $\frac\pi2$ te integreren, dat geeft een kwart van de boog.
Ten slotte: kies en ander onderwerp want `Poolvergelijking Ellips' is nu een warboel.Zie Wikipedia: numerieke integratie [https://nl.wikipedia.org/wiki/Numerieke_integratie]
kphart
13-2-2019
#87610 - Integreren - Ouder