Welke regel(s) is (zijn) van toepassing voor het oplossen van logaritmische vergelijkingen met meer dan één onbekende?
Adriaan
12-2-2019
De rekenregels zijn niet anders dan bij vergelijkingen met één onbekende. 't Is handig om een voorbeeld te geven van het soort vergelijkingen dat je op wilt lossen.Naschrift
Voorbeeld:
$
\eqalign{
& {}^{\frac{1}
{3}}\log (N) = 0,63t - 1,92 \cr
& N = \left( {\frac{1}
{3}} \right)^{0,63t - 1,92} \cr
& N = \left( {\frac{1}
{3}} \right)^{0,63t} \cdot \left( {\frac{1}
{3}} \right)^{ - 1,92} \cr
& N = \left( {\left( {\frac{1}
{3}} \right)^{0,63} } \right)^t \cdot \left( {\frac{1}
{3}} \right)^{ - 1,92} \cr
& N = 0,50^t \cdot 8,24 \cr
& N = 8,24 \cdot 0,50^t \cr
& b \approx 8,24 \cr
& g \approx 0,50 \cr}
$
WvR
12-2-2019
#87598 - Vergelijkingen - Ouder