WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Re: Binonium van Newton

Dat is het helemaal :)

Ronald
27-12-2018

Antwoord

Ok... daar komt ie...

$
\begin{array}{l}
\sum\limits_{k = 0}^{10} {\left( {\begin{array}{*{20}c}
{10} \\
k \\
\end{array}} \right) \cdot \left( {\frac{1}{2}} \right)^{10} } = \\
\left( {\begin{array}{*{20}c}
{10} \\
0 \\
\end{array}} \right) \cdot \left( {\frac{1}{2}} \right)^{10} + \left( {\begin{array}{*{20}c}
{10} \\
1 \\
\end{array}} \right) \cdot \left( {\frac{1}{2}} \right)^{10} + ... + \left( {\begin{array}{*{20}c}
{10} \\
{10} \\
\end{array}} \right) \cdot \left( {\frac{1}{2}} \right)^{10} \\
\left( {\frac{1}{2}} \right)^{10} \cdot \left( {\left( {\begin{array}{*{20}c}
{10} \\
0 \\
\end{array}} \right) + \left( {\begin{array}{*{20}c}
{10} \\
1 \\
\end{array}} \right) + ... + \left( {\begin{array}{*{20}c}
{10} \\
{10} \\
\end{array}} \right)} \right) \\
\left( {\frac{1}{2}} \right)^{10} \cdot 2^{10} = 1 \\
\end{array}
$

Dat was niet echt een verrassing of toch?

WvR
27-12-2018


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#87339 - Kansrekenen - Leerling bovenbouw havo-vwo