WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Limiet van een goniometrische functie

Ik zou de lim in 0 van de functie tanx/(1-cosx) moeten berekenen. Waarschijnlijk m.b.v. de eigenschap lim in 0 sinx/x = 1. Zou iemand mij daarmee kunnen helpen
Bedankt op voorhand.

loic
18-3-2003

Antwoord

ik kom ook niet uit deze vraag; wel heb ik de idee dat mijn lumineuze idee zowel teller als noemer met (1+cos(x)) te vernmenigvuldigen ene stap in de goede richting is

tan(x)
------ =
1-cos(x)

tan(x)[1+cos(x)]
--------- =
1-cos2(x)

tan(x)[1+cos(x)]
--------- =
sin2(x)

tan(x)+sin(x)
--------- =
sin2(x)

(deel sin(x) weg uit teller en noemer)

1+1/cos(x)
--------- =
sin(x)

(vermenigvuldig teller en noemer met cos(x)

1+cos(x)
--------- =
sin(x)cos(x)

...en aan de laatste uitdrukking valt te zien dat de uitdrukking singulier is in het punt nul. De teller is namelijk gelijk aan 2 terwijl de noemer naar nul toe gaat, immers een der factoren gaat naar nul.
De limiet bestaat derhalve niet.
Controle mbv taylorreeks-ontwikkelingen (zie link) van sin(x) en cos(x) geeft hetzelfde resultaat

MvdH
19-3-2003


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#8726 - Limieten - 3de graad ASO