WisFaq!

\require{AMSmath} geprint op maandag 25 november 2024

Re: Re: Ellips en hyperbool

Beste kphart,
Ik loop direct alvast. Ik wil er graag figuren bij hebben, zodat ik visueel kan volgen wat er gebeurt. Je moet mijn niveau schatten op Mavo-niveau.

Jaap van der Pol
27-9-2018

Antwoord

Teken zelf een ellips; je ellips had vergelijking
$$
\frac{x^2}{a^2}+\frac{y^2}{b^2}=1
$$dus deze gaat door de punten $(\pm a,0)$ en $(0,\pm b)$. (Neem voor het gemak bijvoorbeeld $a=5$ en $b=3$. Dan is $e$, je brandpuntsafstand, gelijk aan $4$.
De richtlijn $\ell$ is gegeven door $x=d$, teken die rechts van de ellips.
Er is een vast getal $\alpha$ (tussen $0$ en $1$) zo dat voor elk punt $X$ op de ellips de verhouding tussen de afstand van $X$ tot $F=(e,0)$ en de afstand van $X$ tot $\ell$ gelijk is aan $\alpha$.
Bekijk de twee speciale punten $X_1=(a,0)$ en $X_2=(0,b)$, voor $X_1$ is de verhouding gelijk aan $(d-a)/(a-e)$ en voor $X_2$ is de verhouding gelijk aan $a/d$.
Nu kun je
$$
\frac{d-a}{a-e}=\frac da
$$omwerken tot de gewenste relatie. Zie de wikipediapagina voor ellips voor meer plaatjes (daar is $f$ de brandpuntsafstand en $e$ de vaste factor die ik net $\alpha$ heb genoemd).

Wat de hyperbolen betreft: de transformatie in het antwoord neemt de tweede hyperbool, $xy=a$, draait deze eerst $45^\circ$ naar rechts en vouwt vervolgens de asymptoten naar elkaar toe, of uit elkaar, totdat de eerste hyperbool ontstaat.

Zie Pythagoras: over de woorden ellips, hyperbool en parabool [http://fa.its.tudelft.nl/~hart/37/stukjes-pythagoras/jg38/1998-10-stijlfiguren.pdf]

kphart
1-10-2018


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#86880 - Analytische meetkunde - Iets anders