Hallo,
Ik heb een vraag over bijgevoegde som. De eerste twee stappen zijn mij helder, maar de stappen die daarna komen snap ik niet zo goed. Welke wetmatigheid wordt toegepast om van 2 naar 3 te komen? De "[ ]" ken ik bijvoorbeeld alleen van differentieren en heb ik niet eerder gezien bij algebra.
Hopelijk kunnen jullie me een beetje op weg helpen.Aleta
6-9-2018
Die rechte haken '[' en ']' zijn hetzelfde als de normale haakjes, je had daar ook $2(2)((-1)(x-1))(2+x)$ kunnen schrijven, maar misschien heeft men gedacht dat de rechte haken duidelijker zijn. Voor de rest is het wel een beetje soppig...
Ik zou dat zo doen:
$
\eqalign{
& \frac{{2x^2 + 6x - 8}}
{{8 - 4x - 4x^2 }} = \cr
& \frac{{x^2 + 3x - 4}}
{{4 - 2x - 2x^2 }} = \cr
& \frac{{x^2 + 3x - 4}}
{{ - 2( - 2 + x + x^2 )}} = \cr
& \frac{{x^2 + 3x - 4}}
{{ - 2(x^2 + x - 2)}} = \cr
& \frac{{(x - 1)(x + 4)}}
{{ - 2(x + 2)(x - 1)}} = \cr
& \frac{{x + 4}}
{{ - 2(x + 2)}} = \cr
& - \frac{{x + 4}}
{{2(x + 2)}} \cr}
$
Bij jouw uitwerking moeten ze van 1-x eerst nog x-1 maken door middel van het buitenhaakjes halen van -1. Dat ziet er raar uit, maar 't klopt wel:
$1-x=-1(-1+x)=-(x-1)$
Daarna kan je dan de term $x-1$ wegdelen.
Helpt dat?
WvR
7-9-2018
#86801 - Algebra - Student universiteit