Goede avond,
Ik heb volgende DV:
d^3y/dx^3'+xdy/dx =xsinx
Voor het tweede lid kan i wel bedenken dat
y(p)= (Ax+B)(cosx+sinx)
Welke methode gebruiken we hierbij dan wel.
Ik heb al geprobeerd om y=vx in te vullen, af te leiden maar ik kom er niet uit ...
Graag wat hulp of een hint voor substititie misschien
Groetjes
RikRik Lemmens
20-8-2018
Deze differentiaalvergelijking
$$
y''' + xy' = x\sin x
$$Kun je omschrijven tot
$$
z''+xz = x\sin x
$$door $y'$ even $z$ te noemen.
De bijbehorende homogene vergelijking heet een Airy-differentiaalvergelijking en deze heeft geen oplossingen in termen van de elementaire functies, dus de gegeven differentiaalvergelijking ook niet.
Zie Wikipedia: Airy function [https://en.wikipedia.org/wiki/Airy_function]
kphart
21-8-2018
#86704 - Differentiaalvergelijking - Iets anders