WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Breuken vereenvoudigen met letters inbegrepen

Beste

Het is eigenlijk heel erg dat ik het vergeten ben maar hoe kan ik een vergelijking oplossen als de breuken verschillen van elkaar?

Voorbeeld

$
\eqalign{\frac{{2x - 4}}
{{x + 3}} + \frac{{x + 3}}
{{2x - 5}} = 2}
$

Alvast bedankt!!
Groetjes

jan
16-6-2018

Antwoord

Op Rationale vergelijking staan twee voorbeelden hoe dat werkt. Bekijk ze maar 's goed. Je kunt de breuken aan de linker kant gelijknamig maken, optellen en dan gebruik je de rekenregels voor gebroken vergelijkingen.Jouw vergelijking heeft overigens geen (reële) oplossing, dus dat is dan weer jammer...

Uitwerking

$
\eqalign{
& \frac{{2x - 4}}
{{x + 3}} + \frac{{x + 3}}
{{2x - 5}} = 2 \cr
& \frac{{2x - 4}}
{{x + 3}} \cdot \frac{{2x - 5}}
{{2x - 5}} + \frac{{x + 3}}
{{2x - 5}} \cdot \frac{{x + 3}}
{{x + 3}} = 2 \cr
& \frac{{\left( {2x - 4} \right)\left( {2x - 5} \right)}}
{{\left( {x + 3} \right)\left( {2x - 5} \right)}} + \frac{{\left( {x + 3} \right)\left( {x + 3} \right)}}
{{\left( {x + 3} \right)\left( {2x - 5} \right)}} = 2 \cr
& \frac{{4x^2 - 18x + 20}}
{{\left( {x + 3} \right)\left( {2x - 5} \right)}} + \frac{{x^2 + 6x + 9}}
{{\left( {x + 3} \right)\left( {2x - 5} \right)}} = 2 \cr
& \frac{{5x^2 - 12x + 29}}
{{\left( {x + 3} \right)\left( {2x - 5} \right)}} = 2 \cr
& 5x^2 - 12x + 29 = 2\left( {x + 3} \right)\left( {2x - 5} \right) \cr
& 5x^2 - 12x + 29 = 2\left( {2x^2 + x - 15} \right) \cr
& 5x^2 - 12x + 29 = 4x^2 + 2x - 30 \cr
& x^2 - 14x + 59 = 0 \cr
& D = \left( { - 14} \right)^2 - 4 \cdot 1 \cdot 59 = - 40 \cr
& {\text{geen oplossing}} \cr}
$

Lukt dat zo? Anders maar weer vragen!

WvR
16-6-2018


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#86467 - Vergelijkingen - Leerling bovenbouw havo-vwo