Ik probeer de volgende stelling te bewijzen (in eerste instantie via formulemanipulatie):
$
\left( {\begin{array}{*{20}c}
{n + 2} \\
k \\
\end{array}} \right) = \left( {\begin{array}{*{20}c}
n \\
k \\
\end{array}} \right) + 2 \cdot \left( {\begin{array}{*{20}c}
n \\
{k - 1} \\
\end{array}} \right) + \left( {\begin{array}{*{20}c}
n \\
{k - 2} \\
\end{array}} \right)
$
Ik weet dat ik n boven k kan extraheren omdat:
$
\eqalign{\left( {\begin{array}{*{20}c}
n \\
k \\
\end{array}} \right) = \frac{{n!}}{{k!\,\left( {n - k} \right)!}}}
$
Maar daarna loop ik vast. Kan iemand mij hierbij helpen?
Alvast hartelijk dank.John Bruggeling
1-6-2018
Dat gaat zo:
$
\left( {\begin{array}{*{20}c}
n \\
k \\
\end{array}} \right) + 2 \cdot \left( {\begin{array}{*{20}c}
n \\
{k - 1} \\
\end{array}} \right) + \left( {\begin{array}{*{20}c}
n \\
{k - 2} \\
\end{array}} \right) =
$
$
\eqalign{\frac{{n!}}{{k!\left( {n - k} \right)!}} + 2\frac{{n!}}{{\left( {k - 1} \right)!\left( {n - k + 1} \right)!}} + \frac{{n!}}{{(k - 2)!\left( {n - k + 2} \right)!}} =}
$
$\eqalign{
(n - k + 1)(n - k + 2)\frac{{n!}}{{k!\left( {n - k + 2} \right)!}} +...
}$
$\eqalign{
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,... + 2k\left( {n - k + 2} \right)\frac{{n!}}{{k!\left( {n - k + 2} \right)!}} + ...
}$
$\eqalign{
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,... + k(k - 1)\frac{{n!}}{{k!\left( {n - k + 2} \right)!}} =
}$
$\eqalign{
\frac{{n!}}{{k!\,\left( {n - k + 2} \right)!}}\left( {(n - k + 1)(n - k + 2) + 2k\left( {n - k + 2} \right) + k(k - 1)} \right) =
}$
$\eqalign{
\frac{{n!}}{{k!\,\left( {n - k + 2} \right)!}}\left( {(n + 1)(n + 2)} \right) =
}$
$\eqalign{
\frac{{n! \cdot (n + 1)(n + 2)}}{{k!\left( {n - k + 2} \right)!}} =
}$
$\eqalign{
\frac{{(n + 2)!}}{{k!\left( {n - k + 2} \right)!}} =
}$
$\eqalign{
\left( {\begin{array}{*{20}c}
{n + 2} \\
k \\
\end{array}} \right)
}$
Kijk maar 's goed! Reageren mag altijd...
Naschrift
Een goede vraag zou zijn: 'wat is het algemene principe van deze aanpak?'.
WvR
1-6-2018
#86328 - Telproblemen - Student universiteit