WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Re: Getallen door optellen

Inderdaad een handige truc ! Alvast hiervoor bedankt

Maar om het getal 34 te bereiken door enkel de cijfers 1, 2, 3, 4, 5, 6 te hanteren kom ik er met die formule niet omdat het me zeer complex lijkt om te bepalen welke waarde ik van 2n-1 dien af te trekken. Mocht ik de cijfers 1, 2, 3, ..., 31, 32, 33 hanteren dan zou dit inderdaad [2n-1]-1 zijn. Maar als ik mij beperk tot de cijfers 1 tot en met 6 moet ik een waarde x aftrekken ([2n-1-x)]. Maar hoe bepaal ik die waarde x ? Dat lijkt me echt onbegonnen werk.

Zo is bvb 34 = 6+6+6+6+6+4 vertaald naar 5 streepjes.
Anderzijds 34 = 26+1+1+1+2+3 is eveneens vertaald naar 5 streepjes maar deze mag ik niet meenemen aangezien ik 26 niet als term kan gebruiken.

Mijn vraag is dus of het nog doenbaar is om die waarde x te bepalen ?
Rudi

Rudi
13-5-2018

Antwoord

Er is een strategie om dit soort dingen te tellen maar die kan nogal wat boekhouden met zich meebrengen.

Stap 1.
Bepaal alle mogelijkheden om je getal, hier $34$, als som van de uitverkoren getallen te krijgen, zonder acht te slaan op de volgorde.

Dat kan systematisch door het product van de volgende zes factoren uit te werken:Verzamel alle termen $a^\alpha b^{2\beta} c^{3\gamma} d^{4\delta} e^{5\epsilon} f^{6\phi}$ met $\alpha+2\beta+3\gamma+4\delta+5\epsilon+6\phi=34$. Elk product geeft een versomming van $34$ en zo krijg je ze allemaal.

Bijvoorbeeld $a^5b^{10}c^6d^4e^5f^6$ hoort bij $1+1+1+1+1+2+2+2+2+2+3+3+4+5+6$.

Stap 2.
Bij elke product $a^\alpha b^{2\beta} c^{3\gamma} d^{4\delta} e^{5\epsilon} f^{6\phi}$ tel je het aantal variaties; dat is
$$
\frac{n!}{\alpha!\beta!\gamma!\delta!\phi!}
$$waarbij $n=\alpha+\beta+\gamma+\delta+\epsilon+\phi$. Deze multinomiaalcoefficient telt het aantal plaatsingen van de $\alpha$ enen, $\beta$ tweeën, ..., $\phi$ zessen in de som.
Bij de factor hierboven is dat
$$
\frac{15!}{5!5!2!1!1!1!}
$$Stap 3.
Tel alle resultaten bij elkaar op.

Toevoeging: als de volgorde er niet toe doet vervang dan $a$, $b$, $c$, $d$, $e$ en $f$ elk door $x$; na vermenigvuldiging moet je de coefficient van $x^{34}$ hebben.

kphart
15-5-2018


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#86223 - Telproblemen - Ouder