Bedankt! Ik begreep niet of ik de machten bij elkaar kon nemen of dat ik productregel mocht gebruiken.Arlette
10-5-2018
Je kunt ook de productregel gebruiken...
$
\eqalign{
& f(x) = x^3 \cdot \sqrt x \cr
& f'(x) = 3x^2 \cdot \sqrt x + x^3 \cdot \frac{1}
{{2\sqrt x }} \cr
& f'(x) = 3x^2 \cdot \sqrt x \cdot \frac{{2\sqrt x }}
{{2\sqrt x }} + \frac{{x^3 }}
{{2\sqrt x }} \cr
& f'(x) = \frac{{6x^2 \cdot x}}
{{2\sqrt x }} + \frac{{x^3 }}
{{2\sqrt x }} \cr
& f'(x) = \frac{{6x^3 }}
{{2\sqrt x }} + \frac{{x^3 }}
{{2\sqrt x }} \cr
& f'(x) = \frac{{7x^3 }}
{{2\sqrt x }} \cr
& f'(x) = \frac{{7x^3 }}
{{2\sqrt x }} \cdot \frac{{\sqrt x }}
{{\sqrt x }} \cr
& f'(x) = \frac{{7x^3 \sqrt x }}
{{2x}} \cr
& f'(x) = \frac{{7x^2 \sqrt x }}
{2} \cr
& f'(x) = 3\frac{1}
{2}x^2 \sqrt x \cr}
$
... maar of dat nu handig is...?
WvR
10-5-2018
#86212 - Differentiëren - Leerling bovenbouw havo-vwo