WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

De regel van Bayes - 2 taxibedrijven

In een bepaalde stad zijn er twee taxibedrijven. Het ene heeft groene taxi's, het andere blauwe. 75% van de taxi's zijn blauw, de overige 25% zijn groen.

Op een nacht raakt een taxi betrokken in een ongeluk en pleegt vluchtmisdrijf. Er was een getuige die beweert dat de taxi groen was. Het gerecht onderzoekt het zicht van de getuige, gezien de duisternis op het ogenblik van het ongeluk.

Ze stellen vast dat de getuige in 80% van de gevallen de juiste kleur ziet, maar zich in 20% van de gevallen vergist.Mijn oplossing :

Stel
B = de gebeurtenis het is een blauwe taxi $\Rightarrow$ P(B) = 0,75
G = de gebeurtenis het is een groene taxi $\Rightarrow$ P(G) = 0,25
T = de getuige zag een groene taxi

Gegeven P(B) = 0,75; P(G) = 0,25; P(T|G) = 0,80; P(T|B) = 0,20

Gevraagd P(G|T) = ?

P(G|T) = P(T|G)P(G) / P(T)
met P(T) = P(T|G)P(G) + P(T|B)P(B) = 0,80x0,25 + 0,20x0,75
P(T) = 0,35 en dus P(G|T) = (0,80x0,25)/0,35 = 0,20/0,35 = 0,571428571
P(G|T) = 57,14%

Is dit een correcte redenering dito uitkomst ?
Het boek geeft in deze geen uitkomst !
Met dank !

Rudi
1-5-2018

Antwoord

Ik vind de berekening correct.

kphart
1-5-2018


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#86174 - Kansrekenen - Ouder