WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Integraal vinden van een wortel in de noemer

Geachte heer,

Ik probeer van een integraal opgave de oplossing te vinden m.b.v de substitutie methode, maar kom helaas er niet uit. Het gaat om een breuk te weten:

(x2-1)/(2√x)dx

Ik heb een aantal zaken geprobeerd te substitueren, echter zonder succes. Kunt u me zeggen welk element ik moet substitueren met bijvoorbeeld de letter u? In de bijgevoegde screenshot kunt u mijn uitwerking zien.

Bijvoorbaat bedankt voor uw moeite,
Radjan

Radjan
22-3-2018

Antwoord

Om te beginnen: een substitutie is niet echt nodig:
$$
\int_1^2\frac{x^2-1}{2\sqrt x}\,\mathrm{d}x = \frac12\int_1^2 x^{\frac32}-x^{-\frac12}\,\mathrm{d}x
$$en de machten zijn eenvoudig te primitiveren.

Het kan ook met een substitutie: $u=\sqrt x$ is geen slechte keuze. Je krijgt dan inderdaad
$$
\mathrm{d}u=\frac1{2\sqrt x}\,\mathrm{d}x
$$Verder geldt dan natuurlijk $x=u^2$, dus de $x^2$ wordt $u^4$. Ten slotte: $x$ loopt van $1$ tot $2$, dus $u$ loopt van $1$ tot $\sqrt2$. Nu alles invullen.

kphart
22-3-2018


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#85885 - Integreren - Ouder