Beste,
Een vraagje om zeker te zijn dat ik het goed begrijp.
Als je de vergelijking x2=4 oplost, dan zijn er twee oplossingen, namelijk x=2 en x=-2 (want je hebt zowel een positieve als een negatieve machtswortel bij een even exponent).
Maar, als je de volgende vergelijking bekijkt:
x4/2=4, dan heeft deze maar 1 oplossing, namelijk x=2. Want de exponent is rationaal, wat dus veronderstelt dat mijn grondtal positief moet zijn.
Is dit correct?
Alvast bedankt!
Mvg,
PandoPandolien
26-1-2018
Het hangt allemaal van je afspraken af Je kunt er voor kiezen altijd eerst de breuk te vereenvoudigen. In dat geval geldt $x^{\frac42}=x^2$.
En ook als de breuk vereenvoudigd is kun je kiezen:
$$
x^{\frac tn}=(x^t)^{\frac1n}
$$of
$$
x^{\frac tn}=(x^{\frac1n})^t
$$Zolang de $x$ positief is maakt dat allemaal niets uit want we kiezen in dat geval voor $x^{\frac1n}$ altijd de positieve $y$ met $y^n=x$.
Voor negatieve $x$-en lukt $x^{\frac1n}$ wel voor oneven $n$ en niet voor even $n$.
Zie onderstaand artikeltje uit Pythagoras voor meer.Zie Pythagoras: Machtsverheffen voor gevorderden [http://fa.its.tudelft.nl/~hart/37/stukjes-pythagoras/jg45/2006-01-machten.pdf]
kphart
26-1-2018
#85622 - Algebra - 3de graad ASO