Ik moet voor de volgende formule een differentiaalvergelijking voor p(t) opstellen:
p'(t) = 1/2 (d-s)
s(p) = 2+p
d(p) =8-2p
Ik kom er alleen niet uit nu ik met twee variabelen werk, kunnen jullie me uitleggen hoe je uiteindelijk bij het antwoord p(t) = 3-3/2p(t) komt?Bo
15-12-2017
Hallo, Bo.
Je moet hem niet opstellen, want hij staat er al, maar oplossen.
Het antwoord dat je noemt, heb je ook verkeerd overgenomen.
(Het moet zijn p'(t) = 3 - (3/2)p(t).)
Uit de gegevens volgt dp/dt = 1/2(6-3p).
Na scheiden van de variabelen wordt dit 2dp/(6-3p) = dt.
Integreren levert (-2/3)ln|6-3p| = t + c (c is een constante).
Dus |6-3p|) = exp(-3t/2 - 3c/2) = exp(-3t/2)exp(-3c/2).
Dus 6-3p = a exp(-3t/2) waarbij a weer een willekeurige constante is.
Hieruit kun je p oplossen.
hr
15-12-2017
#85379 - Differentiaalvergelijking - Student universiteit