WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Bewijs van een equivalentie

Beste,

De vraag is om met behulp van gevalsonderscheid een bewijs te geven voor: −v ≤ u ≤ v als en alleen als |u| ≤ v. Ik weet echter niet hoe ik zo'n bewijs moet aanpakken en hoe ik daarbij te werk moet gaan. Hulp is gewenst.

Alvast bedankt.

Groeten,

Jan

Jan
11-11-2017

Antwoord

Dit soort bewijsjes komt heel vaak neer op het opschrijven van de definitie en vervolgens herformuleren tot je de gewenste conclusie krijgt.
Bijvoorbeeld: $|u|$ is meestal gedefinieerd als $\max\{u.-u\}$. Dus $|u|\le v$ betekent $\max\{u,-u\}\le v$ en dat betekent weer dat $u\le v$ en $-u\le v$ en de laatste ongelijkheid kun je omschrijven tot $u\ge -v$. Maar nu heb je gevonden dat $u\le v$ en $-v\le u$; dat korten we vaak af met $-v\le u\le v$.
Voor het bewijs van het omgekeerde kun je dit verhaal nagenoeg achterstevoren opschrijven.
Ik zie niet waar gevalsonderscheiding echt nodig is; misschien hanteert je boek een andere definitie van $|u|$.

kphart
12-11-2017


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#85211 - Logica - Student universiteit