Het lukt me maar niet om deze opgave op te lossen...
Gegeven de kromme met als parametervergelijking:
K: x= 2acost-acos2t
y= 2asint+asin2t
1) schets de kromme
2) bepaal de vergelijking van de raaklijn aan de kromme K in de snijpunten met de y-as.
3) bepaal de oppervlakte van het gebied dat ingesloten word door de kromme K.
Kan iemand me hier bij helpen?
Alvast bedankt.jonathanv
28-8-2017
Beste Jonathan, een paar hints om u op weg te helpen.
1) Bereken (x,y) voor elke gemakkelijke waarde T van t tussen 0 en 2·pi. Dat zijn er nogal wat, maar het loont de moeite. Je zult merken dat de tweede helft gemakkelijker is.
1) en 2)
De richtingscoefficient van de raaklijn in (x(T),y(T)) is y'(T)/x'(T); of als x'(T) en y'(T) allebei 0 zijn, kun je de limiet voor t naderend naar T uitrekenen met de stelling van l'Hopital.
3) Als je een goede schets hebt, zul je zien dat je moet uitzoeken voor welke waarden van t1 tussen 0 en $\frac{\pi}{3}$ en voor welke waarden t2 tussen $\frac{\pi}{3}$ en $\frac{\pi}{2}$ geldt dat x(t1) = x(t2).
Als je er dan nog niet uitkomt, kun je verder vragen.
hr
29-8-2017
#84977 - Krommen - Student Hoger Onderwijs België