WisFaq!

\require{AMSmath} geprint op maandag 25 november 2024

Re: Re: Inhoud afgeknotte kegel met integralen

Excuseer, maar ik snap het niet. Met die grenzen krijg ik een andere formule?
In ons boek staat het uitgewerkt met de onaangepaste grenzen en dan klopt de formule wel? Er wordt wel dezelfde substitutie gebruikt... De integraal is helemaal hetzelfde op de grenzen na...

Alvast bedankt voor uw moeite!

Emily
18-6-2017

Antwoord

Ik hoop dat je de substitutie wel begrijpt en het er mee eens bent dat de eerste integraal omgewerkt wordt tot
$$
\pi\frac{h}{r_2-r_1}\int_{r_1}^{r_2}u^2\,\mathrm{d}u
$$
Die integraal reken je zo uit:
$$
\frac\pi3\cdot\frac{h(r_2^3-r_1^3)}{r_2-r_1}
$$
Je kunt $r_2-r_1$ wegdelen uit $r_2^3-r_1^3$, het antwoord wordt dan
$$
\frac\pi3\cdot h\cdot(r_2^2+r_2r_1+r_1^2)
$$
en dat is toch de goede formule?

Zie Wisfaq: afgeknotte kegel [http://www.wisfaq.nl/show3archive.asp?id=25289&j=2004]

kphart
18-6-2017


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#84653 - Integreren - 3de graad ASO