WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Afgeleiden van een boogtangensfunctie

ik heb morgen wiskunde-examen, en bij een bepaalde soort oef, heb ik in mijn notitie bijgeschreven dat het er een goede oef in zou zijn, ik zit al een hele tijd te, zoeken, opnieuw te beginnen, maar kvind het nie, de uitkomst1/2 staat er nochtans bij, het gaat over de afgeleide van bgtan 1-cos x/sin x
alvast bedankt !

nathan
11-6-2017

Antwoord

Als de afgeleide van de $\arctan$ kent, $(\arctan x)'=1/(1+x^2)$,
kom je met de kettingregel een heel eind:
$$
\frac{\mathrm{d}}{\mathrm{d}x}\arctan\left(\frac{1-\cos x}{\sin x}\right) = \frac1{1+\left(\frac{1-\cos x}{\sin x}\right)^2} \cdot \left(\frac{1-\cos x}{\sin x}\right)'
$$

kphart
11-6-2017


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#84602 - Differentiëren - 3de graad ASO