WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Afgeleide van tangens hyperbolicus

Ik weet dat geldt:

f(x)=tanh(x)
f'(x)=((exp(x)+exp(-x))·(exp(-x)+exp(x))-(exp(x)-exp(-x))2)/(exp(-x)+exp(x))2

Maar is die afgeleide niet een ietsiepietsie makkelijker te schrijven?

Ik gebruik nu f'(x)=1-abs(tanh(x) (komt aardig in de buurt, maar is het niet.)

Ben
12-3-2003

Antwoord

tanh(x)ºsinh(x)/cosh(x)
[tanh(x)]'={cosh2x-sinh2x}/cosh2x = 1 - tanh2x

groeten,
martijn

mg
12-3-2003


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#8443 - Differentiëren - Student universiteit